Officiële LangChain-integratie

FluentC LangChain Tool

Officiële Python-plugin voor het integreren van de FluentC AI Vertaal-API met LangChain. Schakel realtime- en batchvertaling, taalherkenning en taakpolling in via LangChain-compatibele tools.

LangChain-integratiefuncties

Realtime- en batchvertaling

Kies tussen directe vertalingen of batchverwerking voor grote hoeveelheden inhoud.

Taalherkenning

Automatisch de taal van de invoerinhoud detecteren met betrouwbaarheidsbeoordeling.

Dynamische taalkeuze

Dropdown-menu's gevuld met de talen die zijn ingeschakeld voor uw API-sleutel.

Formaatondersteuning

Behandel zowel platte tekst als HTML-inhoud naadloos.

Foutafhandeling

Uitgebreide foutafhandeling met ondersteuning voor doorgaan bij fout.

Workflow-integratie

Naadloos integreren in elke N8N-automatiseringsworkflow.

Vereiste FluentC API-sleutel

Om de FluentC LangChain-tools te gebruiken, hebt u een geldige FluentC API-sleutel met een actief abonnement nodig. API-sleutels bieden toegang tot meer dan 140 talen en realtime vertaalmogelijkheden.

Meld je nu aan

Installatie & Instelling

Pakketinstallatie

Installeer het FluentC LangChain-pakket:
# Install via pip
pip install fluentc-langchain-tool

# Or with requirements.txt
echo "fluentc-langchain-tool" >> requirements.txt
pip install -r requirements.txt
Vereist Python 3.7+ en het LangChain-framework.

Authenticatie-instelling

Configureer je FluentC API-sleutel:

from fluentc_langchain_tool import
FluentCTranslationTool

# Initialize with API key
tool = FluentCTranslationTool( api_key="your-fluentc-api-key")

Beschikbaar LangChain-tools

FluentC LangChain Tool Klassen

Gereedschapklasse

Doel

FluentCTranslationTool

Vertaling in realtime of batch indienen

FluentCLanguageDetectorTool

Detecteer de brontaal uit de invoer

FluentCTranslationStatusTool

Controleer de status van batchvertalingsopdrachten

FluentCResultsTool

Peiling voor batchjob vertalingsresultaat

FluentCBatchTranslationTool

Eénmalige batchindiening + polling

Gebruik Voorbeelden

  • Realtime vertaling
  • Batchvertaling
  • Statuscontrole
  • LangChain Agent
Voer realtime vertaling uit met behulp van de FluentC LangChain-tool:
				
					from fluentc_langchain_tool import FluentCTranslationTool

# Initialize the translation tool
tool = FluentCTranslationTool(api_key="your-api-key")

# Perform real-time translation
response = tool.run({
    "text": "Hello, world!",
    "target_language": "fr",
    "source_language": "en",
    "mode": "realtime"
})

print(response)  # Output: "Bonjour, le monde !"

# Translation with auto-detection
response = tool.run({
    "text": "¿Cómo estás?",
    "target_language": "en",
    "mode": "realtime"
})

print(response)  # Output: "How are you?"
print("Detected source language:", response.get('detected_language', 'Unknown'))
				
			
Behandel grote inhoud met batchvertaling en automatische polling:
				
					from fluentc_langchain_tool import FluentCBatchTranslationTool

# Initialize batch translation tool
tool = FluentCBatchTranslationTool(api_key="your-api-key")

# Translate large HTML content
large_html = """
<html>
<head><title>Welcome</title></head>
<body data-rsssl=1>
    <h1>Hello, batch world!</h1>
    <p>This is a large document that needs translation.</p>
    <p>It contains multiple paragraphs and HTML structure.</p>
</body>
</html>
"""

# Submit and automatically poll for results
result = tool.run({
    "text": large_html,
    "target_language": "de",
    "source_language": "en"
})

print("Translated HTML:")
print(result)  # Final translated output after polling

# The tool automatically:
# 1. Submits the batch job
# 2. Polls for completion using estimated_wait_seconds
# 3. Returns the final translation result
				
			
Controleer de status van batchvertalingsopdrachten:
				
					from fluentc_langchain_tool import (
    FluentCTranslationTool, 
    FluentCTranslationStatusTool
)

# Initialize tools
translation_tool = FluentCTranslationTool(api_key="your-api-key")
status_tool = FluentCTranslationStatusTool(api_key="your-api-key")

# Submit a batch translation job
job_response = translation_tool.run({
    "text": "Large document for batch processing...",
    "target_language": "es",
    "mode": "batch"
})

job_id = job_response.get('job_id')
print(f"Batch job submitted: {job_id}")

# Check job status
status_response = status_tool.run({
    "job_id": job_id
})

print(f"Job status: {status_response}")

# Status responses include:
# - "processing": Job is still running
# - "complete": Translation finished
# - "failed": Job encountered an error
# - estimated_wait_seconds: Recommended polling interval
				
			
Integreer FluentC-tools met LangChain-agenten voor complexe workflows:
				
					from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from fluentc_langchain_tool import (
    FluentCTranslationTool,
    FluentCBatchTranslationTool,
    FluentCLanguageDetectorTool,
    FluentCTranslationStatusTool
)

# Initialize FluentC tools
api_key = "your-fluentc-api-key"
translation_tool = FluentCTranslationTool(api_key)
batch_tool = FluentCBatchTranslationTool(api_key)
detector_tool = FluentCLanguageDetectorTool(api_key)
status_tool = FluentCTranslationStatusTool(api_key)

# Create LangChain agent with FluentC tools
agent = initialize_agent(
    tools=[
        Tool.from_function(
            func=translation_tool.run,
            name="FluentC_Translation",
            description="Translate text in real-time or batch mode"
        ),
        Tool.from_function(
            func=batch_tool.run,
            name="FluentC_Batch_Translation",
            description="Translate large content with auto-polling"
        ),
        Tool.from_function(
            func=detector_tool.run,
            name="FluentC_Language_Detection",
            description="Detect language of input text"
        ),
        Tool.from_function(
            func=status_tool.run,
            name="FluentC_Status_Check",
            description="Check batch translation job status"
        )
    ],
    llm=OpenAI(temperature=0),
    agent="zero-shot-react-description",
    verbose=True
)

# Example agent interactions
responses = [
    "Translate 'Hello world' from English to German using FluentC.",
    "Detect the language of 'Bonjour tout le monde' and translate it to Spanish.",
    "Translate this large HTML document to French using batch processing."
]

for query in responses:
    print(f"\nQuery: {query}")
    result = agent.run(query)
    print(f"Result: {result}")
				
			

Klaar om vertalingen toe te voegen aan je N8N-workflows?

Begin vandaag nog met de N8N-integratie van FluentC. Maak je API-sleutel aan, installeer de plugin en begin met het bouwen van meertalige automatiseringsworkflows.