LangChain 集成功能
实时与批量翻译
在即时翻译和批量处理之间选择,适用于大量内容。
语言检测
自动检测输入内容的语言并提供置信度评分。
动态语言选择
下拉菜单中显示已启用的语言,使用您的API密钥。
格式支持
无缝处理纯文本和HTML内容。
错误处理
支持继续失败的全面错误处理。
工作流程集成
无缝集成到任何N8N自动化工作流程中。
需要FluentC API密钥
要使用FluentC LangChain工具,您需要一个有效的FluentC API密钥并拥有有效订阅。 API 密钥提供对 140 多种语言和实时翻译功能的访问。
安装 & 设置
软件包安装
安装 FluentC LangChain 包:
# Install via pip
需要 Python 3.7 及以上版本和 LangChain 框架。
pip install fluentc-langchain-tool
# Or with requirements.txt
echo "fluentc-langchain-tool" >> requirements.txt
pip install -r requirements.txt
认证设置
配置您的 FluentC API 密钥:
from fluentc_langchain_tool import
FluentCTranslationTool
# Initialize with API key
tool = FluentCTranslationTool(
api_key="your-fluentc-api-key")
可用 LangChain 工具
FluentC LangChain 工具类
工具类别
目的
FluentCTranslationTool
FluentCLanguageDetectorTool
FluentCTranslationStatusTool
FluentCResultsTool
FluentCBatchTranslationTool
用法 例子
- 实时翻译
- 批量翻译
- 状态检查
- LangChain 代理
from fluentc_langchain_tool import FluentCTranslationTool
# Initialize the translation tool
tool = FluentCTranslationTool(api_key="your-api-key")
# Perform real-time translation
response = tool.run({
"text": "Hello, world!",
"target_language": "fr",
"source_language": "en",
"mode": "realtime"
})
print(response) # Output: "Bonjour, le monde !"
# Translation with auto-detection
response = tool.run({
"text": "¿Cómo estás?",
"target_language": "en",
"mode": "realtime"
})
print(response) # Output: "How are you?"
print("Detected source language:", response.get('detected_language', 'Unknown'))
from fluentc_langchain_tool import FluentCBatchTranslationTool
# Initialize batch translation tool
tool = FluentCBatchTranslationTool(api_key="your-api-key")
# Translate large HTML content
large_html = """
Welcome
Hello, batch world!
This is a large document that needs translation.
It contains multiple paragraphs and HTML structure.
"""
# Submit and automatically poll for results
result = tool.run({
"text": large_html,
"target_language": "de",
"source_language": "en"
})
print("Translated HTML:")
print(result) # Final translated output after polling
# The tool automatically:
# 1. Submits the batch job
# 2. Polls for completion using estimated_wait_seconds
# 3. Returns the final translation result
from fluentc_langchain_tool import (
FluentCTranslationTool,
FluentCTranslationStatusTool
)
# Initialize tools
translation_tool = FluentCTranslationTool(api_key="your-api-key")
status_tool = FluentCTranslationStatusTool(api_key="your-api-key")
# Submit a batch translation job
job_response = translation_tool.run({
"text": "Large document for batch processing...",
"target_language": "es",
"mode": "batch"
})
job_id = job_response.get('job_id')
print(f"Batch job submitted: {job_id}")
# Check job status
status_response = status_tool.run({
"job_id": job_id
})
print(f"Job status: {status_response}")
# Status responses include:
# - "processing": Job is still running
# - "complete": Translation finished
# - "failed": Job encountered an error
# - estimated_wait_seconds: Recommended polling interval
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from fluentc_langchain_tool import (
FluentCTranslationTool,
FluentCBatchTranslationTool,
FluentCLanguageDetectorTool,
FluentCTranslationStatusTool
)
# Initialize FluentC tools
api_key = "your-fluentc-api-key"
translation_tool = FluentCTranslationTool(api_key)
batch_tool = FluentCBatchTranslationTool(api_key)
detector_tool = FluentCLanguageDetectorTool(api_key)
status_tool = FluentCTranslationStatusTool(api_key)
# Create LangChain agent with FluentC tools
agent = initialize_agent(
tools=[
Tool.from_function(
func=translation_tool.run,
name="FluentC_Translation",
description="Translate text in real-time or batch mode"
),
Tool.from_function(
func=batch_tool.run,
name="FluentC_Batch_Translation",
description="Translate large content with auto-polling"
),
Tool.from_function(
func=detector_tool.run,
name="FluentC_Language_Detection",
description="Detect language of input text"
),
Tool.from_function(
func=status_tool.run,
name="FluentC_Status_Check",
description="Check batch translation job status"
)
],
llm=OpenAI(temperature=0),
agent="zero-shot-react-description",
verbose=True
)
# Example agent interactions
responses = [
"Translate 'Hello world' from English to German using FluentC.",
"Detect the language of 'Bonjour tout le monde' and translate it to Spanish.",
"Translate this large HTML document to French using batch processing."
]
for query in responses:
print(f"\nQuery: {query}")
result = agent.run(query)
print(f"Result: {result}")
准备将翻译添加到您的N8N工作流程中吗?
立即开始使用FluentC的N8N集成。 创建您的API密钥,安装插件,并开始构建多语言自动化工作流程。