Official LangChain Integration
FluentC LangChain Tool
Official Python plugin for integrating FluentC AI Translation API with LangChain. Enable real-time and batch translation, language detection, and job polling through LangChain-compatible tools.
LangChain Integration Features
Real-time & Batch Translation
Choose between instant translations or batch processing for large content volumes.
Language Detection
Automatically detect the language of input content with confidence scoring.
Dynamic Language Selection
Dropdown menus populated with your API key's enabled languages.
Format Support
Handle both plain text and HTML content seamlessly.
Error Handling
Comprehensive error handling with continue-on-fail support.
Workflow Integration
Seamlessly integrate into any N8N automation workflow.
FluentC API Key Required
To use the FluentC LangChain tools, you'll need a valid FluentC API key with an active subscription. API keys provide access to 140+ languages and real-time translation capabilities.
Installation & Setup
Package Installation
Install the FluentC LangChain package:
# Install via pip
Requires Python 3.7+ and LangChain framework.
pip install fluentc-langchain-tool
# Or with requirements.txt
echo "fluentc-langchain-tool" >> requirements.txt
pip install -r requirements.txt
Authentication Setup
Configure your FluentC API key:
from fluentc_langchain_tool import
FluentCTranslationTool
# Initialize with API key
tool = FluentCTranslationTool(
api_key="your-fluentc-api-key")
Available LangChain Tools
FluentC LangChain Tool Classes
Tool Class
Purpose
FluentCTranslationTool
FluentCLanguageDetectorTool
FluentCTranslationStatusTool
FluentCResultsTool
FluentCBatchTranslationTool
Usage Examples
- Real-Time Translation
- Batch Translation
- Status Checking
- LangChain Agent
from fluentc_langchain_tool import FluentCTranslationTool
# Initialize the translation tool
tool = FluentCTranslationTool(api_key="your-api-key")
# Perform real-time translation
response = tool.run({
"text": "Hello, world!",
"target_language": "fr",
"source_language": "en",
"mode": "realtime"
})
print(response) # Output: "Bonjour, le monde !"
# Translation with auto-detection
response = tool.run({
"text": "¿Cómo estás?",
"target_language": "en",
"mode": "realtime"
})
print(response) # Output: "How are you?"
print("Detected source language:", response.get('detected_language', 'Unknown'))
from fluentc_langchain_tool import FluentCBatchTranslationTool
# Initialize batch translation tool
tool = FluentCBatchTranslationTool(api_key="your-api-key")
# Translate large HTML content
large_html = """
Welcome
Hello, batch world!
This is a large document that needs translation.
It contains multiple paragraphs and HTML structure.
"""
# Submit and automatically poll for results
result = tool.run({
"text": large_html,
"target_language": "de",
"source_language": "en"
})
print("Translated HTML:")
print(result) # Final translated output after polling
# The tool automatically:
# 1. Submits the batch job
# 2. Polls for completion using estimated_wait_seconds
# 3. Returns the final translation result
from fluentc_langchain_tool import (
FluentCTranslationTool,
FluentCTranslationStatusTool
)
# Initialize tools
translation_tool = FluentCTranslationTool(api_key="your-api-key")
status_tool = FluentCTranslationStatusTool(api_key="your-api-key")
# Submit a batch translation job
job_response = translation_tool.run({
"text": "Large document for batch processing...",
"target_language": "es",
"mode": "batch"
})
job_id = job_response.get('job_id')
print(f"Batch job submitted: {job_id}")
# Check job status
status_response = status_tool.run({
"job_id": job_id
})
print(f"Job status: {status_response}")
# Status responses include:
# - "processing": Job is still running
# - "complete": Translation finished
# - "failed": Job encountered an error
# - estimated_wait_seconds: Recommended polling interval
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from fluentc_langchain_tool import (
FluentCTranslationTool,
FluentCBatchTranslationTool,
FluentCLanguageDetectorTool,
FluentCTranslationStatusTool
)
# Initialize FluentC tools
api_key = "your-fluentc-api-key"
translation_tool = FluentCTranslationTool(api_key)
batch_tool = FluentCBatchTranslationTool(api_key)
detector_tool = FluentCLanguageDetectorTool(api_key)
status_tool = FluentCTranslationStatusTool(api_key)
# Create LangChain agent with FluentC tools
agent = initialize_agent(
tools=[
Tool.from_function(
func=translation_tool.run,
name="FluentC_Translation",
description="Translate text in real-time or batch mode"
),
Tool.from_function(
func=batch_tool.run,
name="FluentC_Batch_Translation",
description="Translate large content with auto-polling"
),
Tool.from_function(
func=detector_tool.run,
name="FluentC_Language_Detection",
description="Detect language of input text"
),
Tool.from_function(
func=status_tool.run,
name="FluentC_Status_Check",
description="Check batch translation job status"
)
],
llm=OpenAI(temperature=0),
agent="zero-shot-react-description",
verbose=True
)
# Example agent interactions
responses = [
"Translate 'Hello world' from English to German using FluentC.",
"Detect the language of 'Bonjour tout le monde' and translate it to Spanish.",
"Translate this large HTML document to French using batch processing."
]
for query in responses:
print(f"\nQuery: {query}")
result = agent.run(query)
print(f"Result: {result}")
Ready to Add Translation to Your N8N Workflows?
Get started with FluentC's N8N integration today. Create your API key, install the plugin, and start building multilingual automation workflows.